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Abstract—In this paper, we introduced a non linear dynamic analysis and mathematical study of the vibration behavior in vertical shak-

ing conveyor under harmonic and parametric excitation. By studying the vibrating motion of vertical vibration conveyor, the equations of motion de-

scribed by a coupled of nonlinear differential equations (two degree of freedom) including the linear and cubic nonlinear terms. Multiple scale perturba-

tion method applied to study the approximate mathematical solutions up to the second order approximation and we studied the stability of the steady 

state solution mathematically at the worst different resonance cases using frequency response equations. The resulting different resonance cases re-

ported and studied numerically. Also, the numerical solutions of vertical shaking conveyor investigated applying Runge-Kutta of fourth order. The stability 

of the steady state solution near the selected resonance cases investigated numerically using phase-plane technique. The effect of the different para-

meters of the vertical shaking conveyor studied numerically. Results compared to previously published work. In the future work, the system can be stu-

died at another worst different resonance cases or we can use active and passive controller.  

 
  

Index Terms— Vibro-impact system, Multiple time scale, Vibrations, Resonance, Stability. 

——————————      —————————— 

1 INTRODUCTION                                                                     

n the area of mechanics and electronics, the behaviors of 

mechanical systems under periodic loadings have been ex-

amined by many researchers. Vertical conveyors are effec-

tive examples observing various kinds of parameters of this 

problem. Vertical Vibratory conveyor is developed recently to 

convey the bulk materials. It has some advantages like simple 

structure, occupied less, long conveying road, low mainten-

ances cost and energy consumed less. It uses to convey high 

temperature, wearing, poisoned and volatile materials if it is 

sealed. The screening, dryness, and cooling processes can be 

fulfilled at the conveying process. So it is used broadly in iron 

and steel industry, metallurgical industry, chemical plant.   In 

vertical shaking conveyers, the load-carrying element per-

forms double harmonic oscillations: linear along the vertical 

axis and rotational around that axis (i.e. longitudinal and tor-

sional oscillations). Conveyer drives with centrifugal vibration 

exciters may have  (1) a single unbalanced mass,  (2) two equal 

unbalancing masses, (3) a pendulum-type unbalanced mass, 

(4) four unbalanced masses in two shafts, (5) four rotating un-

balanced masses for three principal modes of oscillation, i.e. 

linear, elliptical, and circular. 

Alısverisci [1] the transitional behavior across resonance, dur-

ing the starting of a single degree of freedom vibratory system 

excited by crankand-rod. A loaded vibratory conveyor is safer 

to start than an empty one. Shaking conveyers with cubic non-

linear spring and ideal vibration exciter have been analyzed 

analytically for primary resonance by the Method of Multiple 

Scales, and numerically. The approximate analytical results 

obtained in this study have been compared with the numerical 

results, and have been found to be well matched. Comparing 

the results obtained by applying the approximate analytic me-

thod with those obtained numerically it is concluded that the 

difference is negligible, proving the correctness of the analytic 

procedure used. Bayıroglu [2] the nonlinear analysis for the 

change of the parameters of the motion, stability condition, 

and the jump phenomena has been shown graphically the 

transition over resonance of a nonlinear vibratory system, ex-

cited by unbalanced mass, is important in terms of the maxi-

mum vibrational amplitude produced on the drive for the 

cross-over. Alısverisci et al [3] The working ranges of oscillat-

ing shaking conveyers with a non-ideal vibration exciter have 

been analyzed analytically for primary resonance by the me-

thod of multiple scales with reconstitution, and numerically. 

The maximum amplitude of vibration is important in deter-

mining the structural safety of the vibrating members. The 

results of the numerical simulations, obtained from the analyt-

ical equations, showed that the important dynamic characte-

ristics of the system such as damping, non-linearity and the 

amplitude excitations effects, and presented a periodic beha-

vior for these situations. The jump phenomenon occurs in the 

motion of the system near resonance. The analytical results 

obtained in this study have been compared with the numerical 

results, and have been found to be well matched. Alısverisci et 

al [4], the vibrating system is analyzed, analytically, and nu-
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merically for superharmonic and subharmonic resonance by 

the method of multiple scales. Very often in the motion of the 

system near resonance the jump phenomenon occurs. The sta-

ble motions of the oscillator are shown with one peaks in the 

power spectrum for superharmonic resonance and with two 

peaks in the power spectrum for subharmonic resonance. Both 

analytical and numerical results that we have obtained are in 

good agreement. The system studied here exhibits chaotic be-

havior in case of strong nonlinearity.  Yuejing Zhao et al [5] 

The configuration and force analysis of vertical vibratory con-

veyor are conducted. The model of system with considering 

the friction between the materials and the spiral conveying 

trough is developed. The numerical simulations are done and 

the dynamical responses curves are given. Suitable configura-

tion parameters of vertical vibratory conveyor and parameters 

of materials can make it work normally.  Bayıroglu [6] Prima-

ry, subharmonic, and superharmonic responses have been 

investigated with multiple scales along with numerical me-

thods for vertical conveyors. The change in the parameters of 

motion, stability condition, and jump phenomena has been 

shown graphically by Mathematica software for comparing 

the results. Both analytical and numerical results obtained had 

good agreement. Systems, excited by unbalanced mass, are 

important in terms of the maximum vibration amplitude pro-

duced on the drive for the cross-over. The maximum ampli-

tude of vibration is then of interest in determining the struc-

tural safety of the vibrating members.  Eissa et al. [7-9] investi-

gated saturation phenomena in non-linear oscillating systems 

subject to multi-parametric and/or external excitations. The 

system represents the vibration of a single-degree-of-freedom 

cantilever or the wing of an aircraft. They reported the occur-

rence of saturation phenomena at different parameters values. 

They applied saturation values of different parameters as op-

timum working conditions for vibration suppression of the 

cantilever.  Hamed et al [10-12] showed how effective is the 

passive vibration control reduction at resonance under multi-

external or both multi-external and multi-parametric and both 

multi-external and tuned excitation forces. They reported that 

the advantages of using multi-tools are to machine different 

materials and different shapes at the same time. This leads to 

saving the time and higher machining efficiency. Kamel and  

 

 

Hamed [13] studied the nonlinear behavior of an inclined ca-

ble subjected to harmonic excitation near the simultaneous 

primary and 1:1 internal resonance using multiple scale me-

thod. Hamed et al [14] presented the behavior of the nonlinear 

string beam coupled system subjected to external, parametric 

and tuned excitations for case 1:1 internal resonance. The sta-

bility of the system studied using frequency response equa-

tions and phase-plane method. It is found from numerical si-

mulations that there are obvious jumping phenomena in the 

frequency response curves. Sayed and Hamed [15] studied the 

numerical response and stability analyses of the behavior of 

the pitch-roll ship model described by a two-degree-of-

freedom system under harmonic and parametric excitation 

forces. They obtained the approximate solutions up to and 

including the second-order approximations using the method 

of multiple scale perturbation technique. Sayed et al. [16] in-

vestigated the non-linear dynamics of a two-degree-of free-

dom vibration system including quadratic and cubic non-

linearities subjected to external and parametric excitation 

forces. There exist multi-valued solutions which increase or 

decrease by the variation of some parameters. The numerical 

simulations show the system exhibits periodic motions and 

chaotic motions. Kamel et al. [17] studied a model subject to 

multi-external excitation forces. The model is represented by 

two-degree-of-freedom system consisting of the main system 

and absorber simulating ultrasonic machining. They used the 

passive vibration controller to suppress the vibration behavior 

of the system.   

2.  MATHEMATICAL ANALYSIS 

 
The elevator has a cylindrical casing. A helical open trough or 

closed pipe is attached to the outside or the inside of the ver-

tical tubular casing along which the load can be transported 

from the bottom upward. A vibration-exciting drive is 

mounted at the top or bottom of the casing to impart directed 

vibrations along and around the vertical axis to the bottom, 

which cause the load to move upward along the helix. The 

rotating unbalanced masses develop centrifugal forces P in the 

vertical conveyor, as shown in Fig. 1. The vertical components 

of these forces Pz, induce vertical vibrations in the conveyor 

(along the vertical axis); the horizontal components Px are 

directed differently and form a moment, which causes angular 

(torsional) vibrations of the conveyor. With a particular com-

bination of these oscillations at definite frequency and ampli-

tude, the load moves upward along the helix in Fig. 1a.             

———————————————— 
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Fig. 1a Vertical shaking conveyor 
Fig. 1b Unbalanced masses for the vertical shaking conveyor 

 
The system is excited by linear and nonlinear external and 

parametric excitation forces. Proceeding as in Ref. [6], we can 

obtain the following nonlinear ordinary differential governing 

equation of motion for the Vertical shaking conveyor 

   2

1 1 1 1 2 1 1cos sin cos sinz z f t t z f t t          

              
 

3

1 1 1 12 z z                           (1) 

   2

2 2 2 1 2 2 1 1cos sin cos sinz z f t t z f t t          

                  
3

2 2 2 22 z z                                        (2) 

where  1 2,   are the damping coefficients of vertical shak-

ing conveyor system and controller, 1  and 2 are nonlinear 

coefficients of the vertical shaking conveyor system, 1f , 2f  

are the excitation forcing amplitudes and  ,  1  are external 

and parametric excitation frequencies. The vertical shaking 

conveyor system natural frequencies are 
1

  and 
2

 ,   is a 

small perturbation parameter and  0 1   .   

3. PERTURBATION ANALYSIS  

 

The MSPT method is used to obtain a uniformly valid, asymp-

totic expansion of the solutions for (1)–(2) is in the form: 

      2

1 10 0 1 11 0 1; , , ( )z t z T T z T T O                          (3) 

      2

2 20 0 1 21 0 1; , , ( )z t z T T z T T O                         (4) 

The derivatives will be in the form 

0 1

2
2

0 0 12

...

2 ...

d
D D

dt

d
D D D

dt






   


  


                                               (5) 

For the first-order approximation, we introduce two time 

scales, where 
n

nT t  and the derivatives 
n nD T   ,     

(n= 0, 1). Substituting (3)–(5) into (1)–(2) and equating the coef-

ficients of equal powers of    leads to 

0( )O   

2 2

0 1 10( ) 0D z 
                                                             (6a) 

2 2

0 2 20( ) 0D z                                                             (6b) 

1( )O   

   2 2

0 1 11 1 10 2 1 1( ) cos sin cos sinD z f t t z f t t        

                    

3

0 1 10 1 0 10 1 102 2D D z D z z                           (7a) 

   2 2

0 2 21 1 20 2 1 1( ) cos sin cos sinD z f t t z f t t        

                         

3

0 1 20 2 0 20 2 202 2D D z D z z   
                   

(7b) 

The general solutions of (6) can be written in the form  

 10 1 1 1 0( )expz A T i T cc                                          (8a) 

 20 2 1 2 0( )exp .z A T i T cc                                            (8b) 

Where mA (m=1, 2) are complex function in 1T , cc  represents 

the complex conjugate of the previous terms. Substituting (8) 

into (7) and eliminating the secular terms, the particular solu-

tions of (7) will be in the form: 

   
3

1 1 1
11 1 0 02 2 2

1 1

exp 3 exp
8 2( )

A f
z i T i T




 

   
     

   

      

 1 2 1
02 2 2 2

1 1 1 1

exp
2 ( ) 2( ( ) )

f f A
i T

i   

   
     

      
  

  2 1
1 1 0 2 2

1 1 1

exp ( )
2 ( ( ) )

f A
i T

i


 

 
     

   
          

  2 1
1 1 0 2 2

1 1 1

exp ( )
2( ( ) )

f A
i T

 

 
     

   
                   

                                                                                                                                              

  2 1
1 1 0 2 2

1 1 1

exp ( )
2 ( ( ) )

f A
i T

i


 

 
     

   

 1 1 0exp ( ) .i T c c                                                (9a)   

                                                                                                   

   
3

2 2 1
21 2 0 02 2 2

2 2

exp 3 exp
8 2( )

A f
z i T i T




 

   
     

     

      

 1 2 2
02 2 2 2

2 2 1 2

exp
2 ( ) 2( ( ) )

f f A
i T

i   

   
     

           
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  2 2
1 2 0 2 2

2 1 2

exp ( )
2 ( ( ) )

f A
i T

i


 

 
     

               

       2 2
1 2 0 2 2

2 1 2

exp ( )
2( ( ) )

f A
i T

 

 
     

     

 

       2 2
1 2 0 2 2

2 1 2

exp ( )
2 ( ( ) )

f A
i T

i


 

 
     

   
                                                                                                                                            

       1 2 0exp ( ) .i T c c                                          (9b)   

We can rewrite Eqs. (9) in the form  

   11 1 1 0 2 0 3 1 1 0exp(3 ) exp exp ( )z K i T K i T K i T      

       4 1 1 0exp ( )K i T cc                                      (10a)  

   21 1 2 0 2 0 3 1 2 0exp(3 ) exp exp ( )z H i T H i T H i T      

       4 1 2 0exp ( )H i T cc                                        (10b) 

 

where , ( 1,...,4)iK i   and , ( 1,...,4)iH i   are a complex 

function in 1 2,T T  and cc represents the complex conjugates. 

From the above-derived solutions, many resonance cases can 

be deduced. The reported resonance cases are classified into: 

 

(A) Primary Resonance:  1 2, .     

(B) Sub-Harmonic Resonance: 1 1 1 22 , 2 .               

(C) Simultaneous or Incident Resonance: Any combination of 

the above resonance cases is considered as simultaneous or 

incident resonance.  

4. STABILITY OF MOTION 

4.1. FOR THE FIRST MODE OF VERTICAL SHAKING 

CONVEYOR SYSTEM 

 

Stability of the considered system is investigated at the simul-

taneous primary 1    and principle parametric 1 12    

are considered. Two detuning parameters 1  and 2   such 

that  

1 1    and 1 1 1 2                 (11) 

This case represents the system worst case. Substituting Eq. 

(11) into Eq. (7a) and eliminating the secular terms, leads to 

the solvability conditions for the first order approximation, we 

get 

 

2

1 1 1 1 1 1 1 1 1 1 1 1

1
2 2 3 exp( )

2

i
i D A i A A A f i T

 
        

 

2 1 2 1

1
exp( )

2

i
f A i T

 
  
 

                                   (12) 

To analyze the solutions of Eq. (12), we express 1 1 2( , )A T T

and 2 1 2( , )A T T  in the polar form  

    1
1 1 2

1

2
( , )

ia
A T T e


                                                    (13) 

where 1a and 1 are the steady state amplitude and phase of 

the motion of the first mode. Substituting Eq. (13) into Eq. (12) 

and equating the real and imaginary parts we obtain the fol-

lowing equations describing the modulation of the amplitude 

and phase of the first modes of vertical shaking conveyor re-

sponse: 

 

1 1 2 1
1 1 1 1 1 2

1 1 1

cos sin cos
2 2 4

f f f a
a a       

  


               
1 1

2

1

sin
4

f a
 


                                                                                                           (14a)                                                                                                

3

1 1 1 1 2 1
1 1 1 1 2

1 1 1 1

3
cos sin cos

8 2 2 4

a f f f a
a


       

   


          1 1
2

1

sin
4

f a
 


                                                            (14b) 

   

  Where  

                   1 1 1 1T     and 2 2 1 12T            (15) 

Form the system of Eqs. (14) to have stationary solutions, the 

following conditions must be satisfied: 

                 1 1 2 0a                                                            (16) 

It follows from Eq. (15) that     1 2 1                                        

Hence, the steady state solutions of Eqs. (14) are given by 

Hence, the fixed points of Eqs. (22)- (23) are given by 

1 1 2 1
1 1 1 1 2

1 1 1

cos sin cos
2 2 4

f f f a
a      

  

                   
1 1

2

1

sin 0
4

f a
  


                                                                                                    (17a)                                                                              
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 
3

1 1 1 1 2 1
1 1 2 1 1 2

1 1 1 1

3
cos sin cos

8 2 2 4

a f f f a
a


       

   
 

             1 1
2

1

sin 0
4

f a
  


                                                   (17b)                                                                                                                                                                                                                                                                  

Solving the resulting algebraic equations for the fixed points, 

we obtained 

2 2 4
2 2 21 1 1 1
1 2 1 1 2 2

1 1

3 9
2

4 64

a a   
          

   
   

2 2 2

1 2 1 1 2 1 2

2 2 2 2

1 1 1 1 1 1

3
0

4 2 8 2

a f f f f

a a

 
    

    
                        (18) 

4.2. FOR THE SECOND MODE OF VERTICAL SHAKING 

CONVEYOR SYSTEM 

 

The stability is investigated at the simultaneous primary 

2    and sub-harmonic 1 22    are considered. We 

introduce detuning parameters 3  and 4   such that  

2 3    and 1 2 2 4            (19) 

This case represents the system worst case. Substituting Eq. 

(19) into Eq. (7b) and eliminating the secular terms, leads to 

the solvability conditions for the first order approximation, we 

get 

2

2 1 2 2 2 2 2 2 2 1 3 1

1
2 2 3 exp( )

2

i
i D A i A A A f i T

 
         

 

2 1 4 1

1
exp( )

2

i
f A i T

 
  
 

                                        (20) 

Appling the same process as the stability of the first mode to 

Eq. (20), the frequency equations for angular vibration can be 

obtained as  

2 2 4
2 2 22 2 2 2
3 4 3 2 4 2

2 2

3 9
2

4 64

a a   
          

   
  

        

2 2 2

2 4 2 1 2 1 2

2 2 2 2

2 2 2 2 2 2

3
0

4 2 8 2

a f f f f

a a

 
    

    
              (21) 

5. NUMERICAL RESULTS 

 
To determine the numerical solution and response of the given 

system of equations (1) and (2), the Runge-Kutta of fourth or-

der method was applied. Fig. 2 illustrates the response and the 

phase-plane for the non-resonant system (basic case) where 

1 1 2   at some practical values of the equation 

parameters 1 20.00825, 0.00825,     1 20.05, 0.05,   

1 20.1, 0.002,f f 
1 1 22.55, 2.44, 2.25, 2.88       . 

It is observed from this figure that the response of the first and 

second modes of the vertical shaking conveyor system start 

with increasing amplitude with some chaotic and tuned oscil-

lation respectively, the oscillation of the two modes becomes 

stable and the steady state amplitudes z1 and z2 are about 0.1 

and 0.08 respectively and the phase plane shows limit cycle, 

denoting that the system is free from chaos.  
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Fig. 2 Non-resonance system behavior (basic case) 

1 1 2    

 
Fig. 3 shows that the time response and phase-plane of the 

simultaneous primary and sub-harmonic resonance n  

and 1 2 n   , n= (1, 2) which is one of the worst resonance 

cases. From this figure we have that the amplitude of the first 

mode of the vertical shaking conveyor system is increased to 

about 1500% of that values shown in Fig. 2., while the ampli-

tude of the second mode is increased to about 1875% and be-

comes stable and the phase plane shows multi-limit cycle.
 

Fig. 3. Simultaneous primary and sub-harmonic resonance 

case ( n    and 1 2 n    , n= (1, 2)). 

5.1. RESPONSE CURVES AND EFFECTS OF DIFFERENT 

PARAMETERS 
 

 In this section, the frequency response equations given by 

Eqs. (18) and (21) are solved numerically at the same values of 

the parameters shown in Fig. 2. Fig. 4a shows the steady state 

amplitudes of the first mode of the vertical shaking conveyor 

system against the detuning parameter 1 at the practical case, 

where 1 20, 0a a  .  Fig. 4b shows that the steady state 

amplitude of the first mode of the vertical shaking conveyor 

system is a monotonic decreasing function in the linear damp-

ing coefficient μ1. For negative and positive values of the non-

linear parameter 1 the curves are bent to the right and left 

and have harding and softing spring type and there exists 

jump phenomena and multi-valued amplitudes as shown in 

Fig. 4c. Fig. 4d shows that the steady state amplitude of the 

first mode is a monotonic decreasing function in the natural 

frequency 1, in this Figure, the response curves are bent to 

the right and have harding spring type and there exists jump 

phenomena. The steady state amplitude of the first mode is a 

monotonic increasing function in the excitation amplitudes f1 

and f2 as shown in Figs. 4 (e, f).   
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Fig.4a. Effects of the detuning parameter 1  

 

Fig.4b. Effects of the damping coefficient 1

 

Fig. 4c. Effect of the natural frequency 1

     

Fig. 4d. Effects of the non-linear parameter α 1

Fig.4e. Effects of the excitation amplitude f1 

       

Fig. 4f. Effects of the excitation amplitude f2         

 

Fig. 5a shows the steady state amplitudes of the second mode 

of the vertical shaking conveyor system against the detuning 

parameter 3 at the practical case, where 
1 20, 0a a  .        

Fig. 5b shows that the steady state amplitude of the second 

mode of the vertical shaking conveyor system is a monotonic 

decreasing function in the linear damping coefficient μ2. For 

negative and positive values of the nonlinear parameter 2, the 

curves are bent to the right and left and have harding and soft-

ing spring type and there exists jump phenomena and multi-

valued amplitudes as shown in Fig. 5c. Fig. 5d shows that the 

steady state amplitude of the second mode is a monotonic de-

creasing function in the natural frequency 2, in this Figure, 

the response curves are bent to the right and have harding 

spring type and there exists jump phenomena. The steady 

state amplitude of the second mode is a monotonic increasing 

function in the excitation amplitudes f1 and f2 as shown in 

Figs. 5 (e, f).   
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Fig.5a. Effects of the detuning parameter 3      

 
Fig.5b. Effects of the damping coefficient 2    

 
Fig. 5c. Effect of the natural frequency 2 

 
Fig. 5d. Effects of the non-linear parameter α2 

 
Fig.5e. Effects of the excitation amplitude f1    

 
Fig. 5f. Effects of the excitation amplitude f2 

 

6. CONCLUSIONS 

 
The nonlinear responses of the vertical shaking conveyor sys-
tem subjected to external and parametric excitations have been 
studied. The problem is described by a two-degree-of-freedom 
system of nonlinear ordinary differential equations. The case 
of simultaneous primary and principle parametric resonance 
is studied by applying multiple time scale perturbation me-
thod. Both the frequency response equations and the phase-
plane technique are applied to study the stability of the sys-
tem. The effect of the different parameters of the system is 
studied numerically. From the above study the following may 
be concluded: 
 

1. The oscillation of the two modes becomes stable and 
the steady state amplitudes z1 and z2 are about 0.1 

and 0.08 at the non-resonant case (
1 1 2   ). 

2. the oscillation of the first mode of the vertical shaking 
conveyor system is increased to about 1500%, while 
the amplitude of the second mode is increased to 
about 1875% at the worst resonance case (the simul-
taneous primary and sub-harmonic resonance              

(
n    and 

1 2 n   ). 

3. The steady state amplitudes of the first and second 
modes of the vertical shaking conveyor system are a 
monotonic decreasing function in the linear damping 
coefficients μ1 and μ2. 
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4.  For negative and positive values of the nonlinear pa-

rameters 1 and 2, the curves are bent to the right 
and left and have harding and softing spring type and 
there exists jump phenomena and multi-valued am-
plitudes. 

5.  The steady state amplitude of the first and second 
modes of the vertical shaking conveyor system are  
monotonic decreasing functions in the natural fre-

quencies 1 and 2., the response curves are bent to 
the right and have harding spring type and there ex-
ists jump phenomena.  

6. The steady state amplitudes of the first and second 
modes are monotonic increasing functions in the exci-
tation amplitudes f1 and f2.   
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